
Odoo OCA Module ↔ Matrix Chat
Integration — Requirements (v18)

Audience: Students building a first, working OCA-style connector. Goal: Post Odoo
case/hearing updates to Matrix rooms and (optionally) mirror Matrix replies into the
Odoo chatter. License: AGPL-3 • Edition: Odoo 18 Community

1) Scope (What we ship in MVP)
• Outbound notifications from Odoo to Matrix when key events happen (new Case, stage

change, new Hearing, new message in chatter if flagged).

• Room linking: link one Matrix room per Case (manually paste Room ID or create via API).

• Simple message composer on Case to send manual messages to the linked room.

• Contact list (read-only sync) & quick DM: fetch Matrix contacts and let users start a 1:1
DM from Odoo.

• Health check action to verify homeserver and token.

Out of scope (MVP): SSO, user-by-user DM sync beyond basic directory/recents, file
uploads, encryption management, typing/reads, advanced webhook signatures, multi-
room per case. Optional inbound sync listed as Stretch.

2) User Roles
• Matrix User: can send outbound case messages; configure room on cases they manage.

• Matrix Manager: configure homeserver, tokens, and defaults; run health checks; see logs.

3) Data Model (Minimal)
Model Purpose Key Fields

matrix.backend Homeserver
config

name, homeserver_url, personal_access_token (Secret),
default_sender_display, verify_ssl (bool), is_active (bool)

legal.case (extend) Link room to
case

matrix_room_id (char), matrix_room_alias (char,
optional), matrix_enabled (bool)

matrix.log Delivery log
date, case_id, room_id, event_type
(case_created/stage_changed/hearing_created/manual/dm
), payload (text), status (ok/failed), error_message

matrix.contact Synced
contacts

matrix_user_id (@user:server), display_name, avatar_url,
is_direct (bool), last_seen (datetime, optional)

res.users (extend, Map to Matrix matrix_user_id (char), matrix_display_name (char)

optional) user
For a generic connector not tied to legal, replace legal.case with a generic
matrix.thread.mixin in future iterations.

---|---|---| | matrix.backend | Homeserver config | name, homeserver_url,

personal_access_token (Secret), default_sender_display, verify_ssl (bool), is_active (bool) | |
legal.case (extend) | Link room to case | matrix_room_id (char), matrix_room_alias (char,

optional), matrix_enabled (bool) | | matrix.log | Delivery log | date, case_id, room_id,

event_type (case_created/stage_changed/hearing_created/manual), payload (text), status (ok/failed),
error_message | | res.users (extend, optional) | Map to Matrix user | matrix_user_id (char),

matrix_display_name (char) |

For a generic connector not tied to legal, replace legal.case with a generic
matrix.thread.mixin in future iterations.

4) Core Features & Acceptance

4.1 Backend Configuration

• Menu: Settings → Matrix to create one active matrix.backend.

• Button Test Connection: GET /_matrix/client/versions and validate token with

a simple whoami call. Accept: Test shows green check or error with reason.

4.2 Room Linking on Case

• Fields on Case: matrix_enabled, matrix_room_id, matrix_room_alias.

• Button Create Room (optional if homeserver allows): POST to create private room and
store room_id.

• Button Open in Matrix (URL action if alias present) Accept: After saving Room ID, Send
Test Message posts a "Hello from Odoo" to the room and logs it.

4.3 Outbound Events → Matrix

• Triggers (config flags per backend):

• Case created → "Case {name} created for {client}".

• Case stage changed → "Case {name} moved to {stage}".

• Hearing created → "Hearing {name} on {date_start} at {location}".

• Manual message from a composer on the case.

• Direct message (DM) from contact list composer (see 4.5).

• Delivery: HTTP POST to

/_matrix/client/v3/rooms/{roomId}/send/m.room.message.

• Retry once on failure; record in matrix.log. Accept: Performing each action posts a

message that appears in Matrix; status recorded as OK.

4.4 Manual Message Composer

• On the Case form, a text field and Send to Matrix button.

• Posts plain text with msgtype: m.text. Newlines preserved. Accept: Sending from

Odoo appears in the linked Matrix room.

4.5 Contacts & Direct Messages (New)

• Sync contacts via:

• /_matrix/client/v3/contacts equivalent sources: use User Directory

Search /_matrix/client/v3/user_directory/search for on-demand

lookup, and/or

• Recents by listing joined rooms and extracting members from DMs (rooms with

is_direct=true) using /_matrix/client/v3/joined_rooms and

.../rooms/{roomId}/members.

• Store minimal local cache in matrix.contact (user_id, display_name, avatar_url,

is_direct). Provide Sync Contacts wizard.

• Contact List menu with search; open a contact to Start DM:

• If an existing DM room exists, reuse it; otherwise create room with

is_direct=true and invite=[matrix_user_id] via

/_matrix/client/v3/createRoom.

• Composer on the contact form to send a first message. Accept: Running Sync
populates contacts; clicking Start DM either reuses or creates a DM room, then sends
a message visible in Matrix and logs an entry.

• On the Case form, a text field and Send to Matrix button.

• Posts plain text with msgtype: m.text. Newlines preserved. Accept: Sending from

Odoo appears in the linked Matrix room.

4.5 Inbound (Optional Stretch)

• Webhook endpoint (controller) to receive Matrix events (via AppService or webhook bot)
and create a mail.message in case chatter for m.room.message events.

• Minimal security: shared secret token in query/header; ignore non-text events. Accept
(Stretch): A text message in Matrix appears in the Odoo case chatter within seconds and
attributes to a generic Matrix Bot user.

5) UI/UX
• Menu: Matrix

• Backends (form/list)

• Logs (list with filters: status, case, event_type)

• Case form: Matrix page with room fields, Send Test, Send to Matrix, and a small help text.

6) Security & Access
• Groups: group_matrix_user, group_matrix_manager.

• Access rules: Managers full on backend/logs; Users read backend minimal fields (not
token), create logs, write case fields they own.

• Hide token in UI; store as ir.config_parameter or fields.Binary with

encryption depending on Odoo 18 capabilities.

7) Technical Checklist
• __manifest__.py: depends ["base", "mail"]. If legal app is used, add it to

depends only in that module; otherwise keep connector generic.

• Python:

• matrix.backend model with test action; HTTP via requests (or odoo

url_open), timeouts, SSL options.

• Mixin or case extension to send events.

• Controller for optional inbound webhook.

• Views: backend, logs, case additions, composer button, actions.

• Data: security groups, ir.model.access, menus, server actions for triggers.

• Tests: mock HTTP; test connection; send message; failure logs; (optional) inbound
controller parsing.

• Lint & OCA pre-commit; i18n.

8) Demo Data
• One demo backend pointing to a placeholder homeserver URL.

• One demo case with a sample room ID.

• A few log entries (OK/failed) for screenshots.

9) Stretch Goals
• Create room with invite list (lawyer emails mapped to Matrix IDs).

• Attachments → upload via m.room.message with url (requires media API).

• Per-stage templates for messages; jinja-like formatting.

• Map Matrix user to Odoo user for inbound attribution.

• Encryption-aware mode (document only, no implementation in MVP).

10) Acceptance Criteria (Summary)
• Backend connection test passes and errors are surfaced clearly.

• Case can store a Matrix Room ID and send a test message.

• Case lifecycle events post to the room and create delivery logs.

• Manual composer posts plain text to the linked room.

• (Stretch) Inbound webhook creates chatter messages in the linked case.

End of MVP Requirements

	Odoo OCA Module ↔ Matrix Chat Integration — Requirements (v18)
	1) Scope (What we ship in MVP)
	2) User Roles
	3) Data Model (Minimal)
	4) Core Features & Acceptance
	4.1 Backend Configuration
	4.2 Room Linking on Case
	4.3 Outbound Events → Matrix
	4.4 Manual Message Composer
	4.5 Contacts & Direct Messages (New)
	4.5 Inbound (Optional Stretch)

	5) UI/UX
	6) Security & Access
	7) Technical Checklist
	8) Demo Data
	9) Stretch Goals
	10) Acceptance Criteria (Summary)

